# This file creates plots and corresponding data in .csv files for PSID marriage outcomes library(ggplot2) library(gridExtra) library(gtable) # set the starting year for plots here: year.start = 2001 # image parameters (units=inches) img.height = 8 img.width = 8 img.res = 200 # single line plot plotline1 <- function(varsrc, varname, xlabel, ylabel, ymult, ymin, ymax, title) { df.src = eval(parse(text=varsrc)) pl = qplot(df.src[,"year"], ymult*df.src[,varname], geom="Line", xlab=xlabel, ylab=ylabel, ylim=c(ymin,ymax), main=title) ggsave(filename=paste(varsrc,"_",varname,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(varsrc,"_",varname,".csv",sep=""), df.src[c("year",varname)], row.names=FALSE) return(pl) } # line plot of different series from same source plotline2 <- function(varsrc, xvar, yvars, ydescs, xlabel, ylabel, ymult, ymin, ymax, title) { # create individual data frames and append them together fprefix = paste(varsrc,paste(yvars, collapse="_"),sep="_") df.master = NULL for(i in 1:length(yvars)) { df.temp = eval(parse(text=varsrc)) df.temp["series"] = rep(ydescs[i], nrow(df.temp)) df.temp = df.temp[c(xvar, yvars[i], "series")] names(df.temp)[2] = "y" df.master = rbind(df.master, df.temp) } # create plot pl = qplot(df.master[,xvar], ymult*df.master[,"y"], color=df.master[,"series"], geom="Line", xlab=xlabel, ylab=ylabel, ylim=c(ymin,ymax), main=title) + theme(legend.position="top") + scale_colour_discrete(name = "Outcome") ggsave(filename=paste(fprefix,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(fprefix,".csv",sep=""), df.master, row.names=FALSE) return(pl) } # line plot of the same series from different sources plotlines <- function(snames, sdescs, xvar, yvar, xlabel, ylabel, ymult, ymin, ymax, title) { # create individual data frames and append them together df.master = NULL for(i in 1:length(snames)) { df.temp = eval(parse(text=paste(snames[i], "_summary",sep=""))) if(sum(names(df.temp) == yvar) == 0) { print(paste("Error: variable",yvar,"does not exist in",snames[i])) } else { df.temp["scenario"] = rep(sdescs[i], nrow(df.temp)) df.master = rbind(df.master, df.temp[c(xvar, yvar, "scenario")]) } } # create plot pl = qplot(df.master[,xvar], ymult*df.master[,yvar], color=df.master[,"scenario"], geom="Line", xlab=xlabel, ylab=ylabel, ylim=c(ymin,ymax), main=title) + theme(legend.position="top") + scale_colour_discrete(name = "") ggsave(filename=paste(yvar,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(yvar,".csv",sep=""), df.master, row.names=FALSE) return(pl) } # append ggplot objects plotA and plotB with x-axes aligned and output to pdf file name given by pdfname # pdf size is currently 8 x 8, but this should be made adjustable # plotA x-axis ticks and labels are removed; legend is moved to top # plotB aspect ratio is squished, legend and title are removed append.ggplots.8x8pdf <- function(plotA, plotB, pdfname) { tA = ggplot_gtable(ggplot_build( plotA + labs(x=NULL) + theme(axis.text.x=element_blank(), axis.ticks.x=element_blank(), legend.position="top", plot.margin=unit(c(1,1,-1.5,1), "cm")) )) tB = ggplot_gtable(ggplot_build( plotB + theme(aspect.ratio=0.2, legend.position="none", plot.margin=unit(c(-1,1,1,1), "cm")) + labs(title="") )) maxWidth = unit.pmax(tA$widths[2:3], tB$widths[2:3]) tA$widths[2:3] = maxWidth tB$widths[2:3] = maxWidth print(paste("Writing appended plots to",pdfname)) pdf(file=pdfname, height=8, width=8) grid.arrange(tA, tB, ncol=1) dev.off() } ############################## Population Outcomes ############################## ### Prevalence of marriage, cohab, single, widowed, partner death yvars = c("pmarried","pcohab","psingle","pwidowed","ppartdied") ydescs = c("Marriage","Cohabitation","Single (not partner death)","Widowed","Partner died") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Prevalence", 1.0, 0.0, 1.0, "Prevalence of Marital Status") ### Prevalence of marriage, cohab, single, widowed, partner death by gender yvars = c("pmarried_male","pmarried_female") ydescs = c("Males","Females") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Prevalence", 1.0, 0.0, 1.0, "Prevalence of Marriage by Gender") yvars = c("pcohab_male","pcohab_female") ydescs = c("Males","Females") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Prevalence", 1.0, 0.0, 1.0, "Prevalence of Cohabitation by Gender") yvars = c("psingle_male","psingle_female") ydescs = c("Males","Females") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Prevalence", 1.0, 0.0, 1.0, "Prevalence of Single by Gender") yvars = c("pwidowed_male","pwidowed_female") ydescs = c("Males","Females") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Prevalence", 1.0, 0.0, 1.0, "Prevalence of Widowhood by Gender") yvars = c("ppartdied_male","ppartdied_female") ydescs = c("Males","Females") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Prevalence", 1.0, 0.0, 1.0, "Prevalence of Partner Death by Gender") ### Prevalence of marriage ever, single ever, widowed ever yvars = c("peverm","peversep","pwidowev") ydescs = c("Ever married","Ever separated","Ever widowed") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Prevalence", 1.0, 0.0, 1.0, "Prevalence of Marital Status") ### Incidence by age group # create individual data frames and append them together yvars = c("imarried","icohab","isingle","iwidowed","ipartdied") ydescs = c("Marriage","Cohabitation","Single (not partner death)","Widowed","Partner died") xvar = "year" agebins = c("2535","3545","4555","5565","65p") varsrc = "psid_summary" fprefix = paste(varsrc,paste(yvars, collapse="_"),paste(agebins, collapse="_"),sep="_") df.master = NULL for(i in 1:length(yvars)) { for(agesfx in agebins) { df.temp = eval(parse(text=varsrc)) df.temp["series"] = rep(ydescs[i], nrow(df.temp)) df.temp["group"] = rep(agesfx, nrow(df.temp)) df.temp = df.temp[c(xvar, paste(yvars[i],agesfx,sep=""), "series", "group")] names(df.temp)[2] = "y" df.master = rbind(df.master, df.temp) } } #df.master # create plot pl = qplot(eval(parse(text=xvar)), y, color=series, geom="Line", xlab="Year", ylab="Incidence", ylim=c(0.0,0.25), main="Incidence of Marital Status by Age", data=df.master) + theme(legend.position="top") + scale_colour_discrete(name = "Outcome") + facet_wrap(~ group, ncol=1) ggsave(filename=paste(fprefix,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(fprefix,".csv",sep=""), df.master, row.names=FALSE) pl ### Incidence (count) of marriage, cohab, single, and death/widowhood by gender psid_summary$died_lmarried_female = (psid_summary$start_pop_lmarried_female - psid_summary$end_pop_lmarried_female)*1e6 psid_summary$died_lmarried_male = (psid_summary$start_pop_lmarried_male - psid_summary$end_pop_lmarried_male)*1e6 psid_summary$singleratio = psid_summary$t_isingle_male / psid_summary$t_isingle_female psid_summary$cohabratio = psid_summary$t_icohab_male / psid_summary$t_icohab_female psid_summary$marriedratio = psid_summary$t_imarried_male / psid_summary$t_imarried_female yvars = c("t_isingle_male","t_isingle_female") ydescs = c("Males","Females") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Millions of people", 1e-6, 1.0, 4.0, "New singles (not partner death) by gender") plotline1("psid_summary", "singleratio", "Year", "", 1.0, 0.75, 1.25, "Male/Female Ratio of New Singles (not partner death)") ### Total new singles by age group # create individual data frames and append them together yvars = c("t_isingle_male","t_isingle_female") ydescs = c("Males","Females") xvar = "year" agebins = c("2535","3545","4555","5565","65p") varsrc = "psid_summary" fprefix = paste(varsrc,paste(yvars, collapse="_"),paste(agebins, collapse="_"),sep="_") df.master = NULL for(i in 1:length(yvars)) { for(agesfx in agebins) { df.temp = eval(parse(text=varsrc)) df.temp["series"] = rep(ydescs[i], nrow(df.temp)) df.temp["group"] = rep(agesfx, nrow(df.temp)) df.temp = df.temp[c(xvar, paste(yvars[i],agesfx,sep=""), "series", "group")] names(df.temp)[2] = "y" df.master = rbind(df.master, df.temp) } } #df.master # create plot pl = qplot(eval(parse(text=xvar)), y, color=series, geom="Line", xlab="Year", ylab="Millions of People", ylim=c(0,2.5), main="New Singles (not partner death) by Age", data=df.master) + theme(legend.position="top") + scale_colour_discrete(name = "Outcome") + facet_wrap(~ group, ncol=1) ggsave(filename=paste(fprefix,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(fprefix,".csv",sep=""), df.master, row.names=FALSE) pl ### Ratio of male-to-female new singles # create individual data frames and append them together yvars = c("r_isingle") ydescs = c("Male/Female Ratio") xvar = "year" agebins = c("2535","3545","4555","5565","65p") varsrc = "psid_summary" fprefix = paste(varsrc,paste(yvars, collapse="_"),paste(agebins, collapse="_"),sep="_") df.master = NULL for(agesfx in agebins) { df.temp = eval(parse(text=varsrc)) df.temp["group"] = rep(agesfx, nrow(df.temp)) df.temp = df.temp[c(xvar, "group")] df.temp$y = eval(parse(text=paste("psid_summary$t_isingle_male",agesfx,"/","psid_summary$t_isingle_female",agesfx,sep=""))) df.master = rbind(df.master, df.temp) } #df.master # create plot pl = qplot(eval(parse(text=xvar)), y, geom="Line", xlab="Year", ylab="", ylim=c(0.4,1.6), main="Male/Female Ratio of New Singles (not partner death) by Age", data=df.master) + facet_wrap(~ group, ncol=1) ggsave(filename=paste(fprefix,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(fprefix,".csv",sep=""), df.master, row.names=FALSE) pl yvars = c("t_icohab_male","t_icohab_female") ydescs = c("Males","Females") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Millions of people", 1e-6, 1.0, 4.0, "New cohabs by gender") plotline1("psid_summary", "cohabratio", "Year", "", 1.0, 0.75, 1.25, "Male/Female Ratio of New Cohabs") ### Total new cohabs by age group # create individual data frames and append them together yvars = c("t_icohab_male","t_icohab_female") ydescs = c("Males","Females") xvar = "year" agebins = c("2535","3545","4555","5565","65p") varsrc = "psid_summary" fprefix = paste(varsrc,paste(yvars, collapse="_"),paste(agebins, collapse="_"),sep="_") df.master = NULL for(i in 1:length(yvars)) { for(agesfx in agebins) { df.temp = eval(parse(text=varsrc)) df.temp["series"] = rep(ydescs[i], nrow(df.temp)) df.temp["group"] = rep(agesfx, nrow(df.temp)) df.temp = df.temp[c(xvar, paste(yvars[i],agesfx,sep=""), "series", "group")] names(df.temp)[2] = "y" df.master = rbind(df.master, df.temp) } } #df.master # create plot pl = qplot(eval(parse(text=xvar)), y, color=series, geom="Line", xlab="Year", ylab="Millions of People", ylim=c(0,3), main="New Cohabs by Age", data=df.master) + theme(legend.position="top") + scale_colour_discrete(name = "Outcome") + facet_wrap(~ group, ncol=1) ggsave(filename=paste(fprefix,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(fprefix,".csv",sep=""), df.master, row.names=FALSE) pl ### Ratio of male-to-female new cohabs # create individual data frames and append them together yvars = c("r_icohab") ydescs = c("Male/Female Ratio") xvar = "year" agebins = c("2535","3545","4555","5565","65p") varsrc = "psid_summary" fprefix = paste(varsrc,paste(yvars, collapse="_"),paste(agebins, collapse="_"),sep="_") df.master = NULL for(agesfx in agebins) { df.temp = eval(parse(text=varsrc)) df.temp["group"] = rep(agesfx, nrow(df.temp)) df.temp = df.temp[c(xvar, "group")] df.temp$y = eval(parse(text=paste("psid_summary$t_icohab_male",agesfx,"/","psid_summary$t_icohab_female",agesfx,sep=""))) df.master = rbind(df.master, df.temp) } #df.master # create plot pl = qplot(eval(parse(text=xvar)), y, geom="Line", xlab="Year", ylab="", ylim=c(0.55,1.45), main="Male/Female Ratio of New Cohabs by Age", data=df.master) + facet_wrap(~ group, ncol=1) ggsave(filename=paste(fprefix,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(fprefix,".csv",sep=""), df.master, row.names=FALSE) pl yvars = c("t_imarried_male","t_imarried_female") ydescs = c("Males","Females") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Millions of people", 1e-6, 3.0, 6.0, "New marriages by gender") plotline1("psid_summary", "marriedratio", "Year", "", 1.0, 0.8, 1.2, "Male/Female Ratio of New Marriages") ### Total new marriages by age group # create individual data frames and append them together yvars = c("t_imarried_male","t_imarried_female") ydescs = c("Males","Females") xvar = "year" agebins = c("2535","3545","4555","5565","65p") varsrc = "psid_summary" fprefix = paste(varsrc,paste(yvars, collapse="_"),paste(agebins, collapse="_"),sep="_") df.master = NULL for(i in 1:length(yvars)) { for(agesfx in agebins) { df.temp = eval(parse(text=varsrc)) df.temp["series"] = rep(ydescs[i], nrow(df.temp)) df.temp["group"] = rep(agesfx, nrow(df.temp)) df.temp = df.temp[c(xvar, paste(yvars[i],agesfx,sep=""), "series", "group")] names(df.temp)[2] = "y" df.master = rbind(df.master, df.temp) } } #df.master # create plot pl = qplot(eval(parse(text=xvar)), y, color=series, geom="Line", xlab="Year", ylab="Millions of People", ylim=c(0,3.5), main="New Marriages by Age", data=df.master) + theme(legend.position="top") + scale_colour_discrete(name = "Outcome") + facet_wrap(~ group, ncol=1) ggsave(filename=paste(fprefix,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(fprefix,".csv",sep=""), df.master, row.names=FALSE) pl ### Ratio of male-to-female new marriages # create individual data frames and append them together yvars = c("r_imarried") ydescs = c("Male/Female Ratio") xvar = "year" agebins = c("2535","3545","4555","5565","65p") varsrc = "psid_summary" fprefix = paste(varsrc,paste(yvars, collapse="_"),paste(agebins, collapse="_"),sep="_") df.master = NULL for(agesfx in agebins) { df.temp = eval(parse(text=varsrc)) df.temp["group"] = rep(agesfx, nrow(df.temp)) df.temp = df.temp[c(xvar, "group")] df.temp$y = eval(parse(text=paste("psid_summary$t_imarried_male",agesfx,"/","psid_summary$t_imarried_female",agesfx,sep=""))) df.master = rbind(df.master, df.temp) } #df.master # create plot pl = qplot(eval(parse(text=xvar)), y, geom="Line", xlab="Year", ylab="", ylim=c(-0.1,2.1), main="Male/Female Ratio of New Marriages by Age", data=df.master) + facet_wrap(~ group, ncol=1) ggsave(filename=paste(fprefix,".pdf",sep=""), plot=pl, width=img.width, height=img.height, units="in") write.csv(file=paste(fprefix,".csv",sep=""), df.master, row.names=FALSE) pl yvars = c("t_iwidowed_male","died_lmarried_female") ydescs = c("Male widowhood","Married female mortality") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Millions of people", 1e-6, 0.0, 3.0, "Widowhood for males") yvars = c("died_lmarried_male","t_iwidowed_female") ydescs = c("Married male mortality","Female widowhood") plotline2("psid_summary", "year", yvars, ydescs, "Year", "Millions of people", 1e-6, 1.0, 4.0, "Widowhood for females") #### stuff from another project for example #### Prevalence of cancer under different scenarios #plotlines(sname, sdesc, xvar="year", yvar="pcancre", "Year", "Prevalence (%)", ymult=100.0, 0, 25, "Prevalence of Cancer") # #### Cancer population size under different scenarios #plotlines(sname, sdesc, xvar="year", yvar="tcancre", "Year", "Population size (millions)", ymult=1.0, 0, 35, "Cancer Population Size") # #### Age 65+ cancer population size under different scenarios #plotlines(sname, sdesc, xvar="year", yvar="tcancre65p", "Year", "Population size (millions)", ymult=1.0, 0, 35, "Age 65+ Cancer Population Size") # #### Average age of Cancer population under different scenarios #pl.age_cancre = plotlines(sname, sdesc, xvar="year", yvar="avg_age_cancre", "Year", "Age (years)", ymult=1.0, 70, 82.5, "Average Age of Cancer Patients") # #### Average age of age 65+ cancer population under different scenarios #pl.age_cancre65p = plotlines(sname, sdesc, xvar="year", yvar="avg_age_cancre65p", "Year", "Age (years)", ymult=1.0, 70, 82.5, "Average Age of Cancer Patients Age 65+") # #### Cancer population recieving treatment under different scenarios #plotlines(sname[-1], sdesc[-1], xvar="year", yvar="tcancre_trtmt", "Year", "Population size (millions)", ymult=1.0, 0, 27, "Cancer Population Receiving Treatment") # #### Age 65+ cancer population recieving treatment under different scenarios #plotlines(sname[-1], sdesc[-1], xvar="year", yvar="tcancre_trtmt65p", "Year", "Population size (millions)", ymult=1.0, 0, 27, "Age 65+ Cancer Population Receiving Treatment") # # ############################### Cost Outcomes ############################## # #### Total medical costs for new cancer patients (designer drug scenario vs. status quo) ##srcs = c(rep("desdrug_summary",2), "nodesdrug_summary") ##yvars = c("new_totmd_mcbs_trtmt", "new_totmd_mcbs_notrtmt", "new_totmd_mcbs_notrtmt") ##descs = c("Treated", "Not Treated", "No Treatment (status quo)") ##maint = "Total Medical Costs for New Cancer Patients\nDesigner Drug Scenario" ##plotmultiline(srcs, descs, "year", yvars, "Year", ylabel="Billions of Dollars (2009)", ymult=1e-9, ymin=0, ymax=1.5e3, title=maint, outname="desdrug_totcost") # #### Total medical costs for final phase cancer patients (PC magic pill scenario vs. status quo) ##srcs = c("pcmagicpill_summary", "nodesdrug_summary") ##yvars = c("new_totmd_mcbs_trtmt", "new_totmd_mcbs_died_cancre") ##descs = c("Treated", "No Treatment (status quo)") ##maint = "Total Medical Costs for Final Phase Cancer Patients\nPC Magic Pill Scenario" ##plotmultiline(srcs, descs, "year", yvars, "Year", ylabel="Billions of Dollars (2009)", ymult=1e-9, ymin=0, ymax=1.5e3, title=maint, outname="pcmagic_totcost") # #### Total medical costs for new cancer patients 65+ (designer drug scenario vs. status quo) ##srcs = c(rep("desdrug_summary",2), "nodesdrug_summary") ##yvars = c("new_totmd_mcbs_trtmt65p", "new_totmd_mcbs_notrtmt65p", "new_totmd_mcbs_notrtmt65p") ##descs = c("Treated", "Not Treated", "No Treatment (status quo)") ##maint = "Total Medical Costs for New Cancer Patients Age 65+\nDesigner Drug Scenario" ##plotmultiline(srcs, descs, "year", yvars, "Year", ylabel="Billions of Dollars (2009)", ymult=1e-9, ymin=0, ymax=1.5e3, title=maint, outname="desdrug_totcost65p") # #### Total medical costs for final phase cancer patients 65+ (PC magic pill scenario vs. status quo) ##srcs = c("pcmagicpill_summary", "nodesdrug_summary") ##yvars = c("new_totmd_mcbs_trtmt65p", "new_totmd_mcbs_died_cancre65p") ##descs = c("Treated", "No Treatment (status quo)") ##maint = "Total Medical Costs for Final Phase Cancer Patients Age 65+\nPC Magic Pill Scenario" ##plotmultiline(srcs, descs, "year", yvars, "Year", ylabel="Billions of Dollars (2009)", ymult=1e-9, ymin=0, ymax=1.5e3, title=maint, outname="pcmagic_totcost65p") # #### Average medical costs for new cancer patients (designer drug scenario vs. status quo) ##srcs = c("desdrug_summary","nodesdrug_summary") ##yvars = c("avgmd_mcbs_trtmt", "avgmd_mcbs_notrtmt") ##descs = c("Treated", "Not Treated/No Treatment (status quo)") ##maint = "Average Medical Costs for New Cancer Patients\nDesigner Drug Scenario" ##plotmultiline(srcs, descs, "year", yvars, "Year", ylabel="Dollars (2009)", ymult=1.0, ymin=0, ymax=1.25e6, title=maint, outname="desdrug_avgcost") # #### Average medical costs for final phase cancer patients (PC magic pill scenario vs. status quo) ##srcs = c("pcmagicpill_summary", "nodesdrug_summary") ##yvars = c("avgmd_mcbs_trtmt", "avgmd_mcbs_died_cancre") ##descs = c("Treated", "No Treatment (status quo)") ##maint = "Average Medical Costs for Final Phase Cancer Patients\nPC Magic Pill Scenario" ##plotmultiline(srcs, descs, "year", yvars, "Year", ylabel="Dollars (2009)", ymult=1.0, ymin=0, ymax=1.25e6, title=maint, outname="pcmagic_avgcost") # #### Average medical costs for new cancer patients 65+ (designer drug scenario vs. status quo) ##srcs = c("desdrug_summary","nodesdrug_summary") ##yvars = c("avgmd_mcbs_trtmt65p", "avgmd_mcbs_notrtmt65p") ##descs = c("Treated", "Not Treated/No Treatment (status quo)") ##maint = "Average Medical Costs for New Cancer Patients Age 65+\nDesigner Drug Scenario" ##plotmultiline(srcs, descs, "year", yvars, "Year", ylabel="Dollars (2009)", ymult=1.0, ymin=0, ymax=1.25e6, title=maint, outname="desdrug_avgcost65p") # #### Average medical costs for final phase cancer patients 65+ (PC magic pill scenario vs. status quo) ##srcs = c("pcmagicpill_summary", "nodesdrug_summary") ##yvars = c("avgmd_mcbs_trtmt65p", "avgmd_mcbs_died_cancre65p") ##descs = c("Treated", "No Treatment (status quo)") ##maint = "Average Medical Costs for Final Phase Cancer Patients Age 65+\nPC Magic Pill Scenario" ##plotmultiline(srcs, descs, "year", yvars, "Year", ylabel="Dollars (2009)", ymult=1.0, ymin=0, ymax=1.25e6, title=maint, outname="pcmagic_avgcost65p") # #### Total medical costs in cancer population #plotlines(sname, sdesc, xvar="year", yvar="new_totmd_mcbs_cancre", "Year", ylabel="Billions of Dollars (2009)", ymult=1e-9, ymin=0, ymax=5e3, "Total Medical Costs in Cancer Population") # #### Total medical costs in cancer population age 65+ #plotlines(sname, sdesc, xvar="year", yvar="new_totmd_mcbs_cancre65p", "Year", ylabel="Billions of Dollars (2009)", ymult=1e-9, ymin=0, ymax=5e3, "Total Medical Costs in Cancer Population Age 65+") # #### Average medical costs in cancer population #plotlines(sname, sdesc, xvar="year", yvar="avgmd_mcbs_cancre", "Year", ylabel="Dollars (2009)", ymult=1.0, ymin=0, ymax=1.8e5, "Average Medical Costs in Cancer Population") # #### Average medical costs in cancer population age 65+ #plotlines(sname, sdesc, xvar="year", yvar="avgmd_mcbs_cancre65p", "Year", ylabel="Dollars (2009)", ymult=1.0, ymin=0, ymax=1.8e5, "Average Medical Costs in Cancer Population Age 65+") # ############################### QoL Outcomes ############################## #### Average degree of pain among cancer patients who experience pain #pl1 = plotlines(sname, sdesc, xvar="year", yvar="avgcdegpain_cancre_pain", "Year", "Pain Score", ymult=1.0, 0, 3, "Average Degree of Pain in Cancer Population Experiencing Pain") #append.ggplots.8x8pdf(pl1, pl.age_cancre + ylab("Mean Age"), pdfname="avgcdegpain_cancre_pain_age.pdf") # #### Average degree of pain among cancer patients who experience pain 65+ #pl1 = plotlines(sname, sdesc, xvar="year", yvar="avgcdegpain_cancre_pain65p", "Year", "Pain Score", ymult=1.0, 0, 3, "Average Degree of Pain in Cancer Population Experiencing Pain Age 65+") #append.ggplots.8x8pdf(pl1, pl.age_cancre65p + ylab("Mean Age"), pdfname="avgcdegpain_cancre_pain65p_age.pdf") # #### Prevalence of clinically significant pain in cancer patients #pl1 = plotlines(sname, sdesc, xvar="year", yvar="pcdegreepain2p_cancre", "Year", "Prevalence (%)", ymult=100, 0, 35, "Prevalence of Clinically Significant Pain in Cancer Patients") #append.ggplots.8x8pdf(pl1, pl.age_cancre + ylab("Mean Age"), pdfname="pcdegreepain2p_cancre_age.pdf") # #### Prevalence of clinically significant pain in cancer patients age 65+ #pl1 = plotlines(sname, sdesc, xvar="year", yvar="pcdegreepain2p_cancre65p", "Year", "Prevalence (%)", ymult=100, 0, 35, "Prevalence of Clinically Significant Pain in Cancer Patients Age 65+") #append.ggplots.8x8pdf(pl1, pl.age_cancre65p + ylab("Mean Age"), pdfname="pcdegreepain2p_cancre65p_age.pdf") # #### Prevalence of 2+ ADL difficulties in Cancer Patients #pl1 = plotlines(sname, sdesc, xvar="year", yvar="padl2p_cancre", "Year", "Prevalence (%)", ymult=100, 0, 25, "Prevalence of 2+ ADL Difficulties in Cancer Patients") #append.ggplots.8x8pdf(pl1, pl.age_cancre + ylab("Mean Age"), pdfname="padl2p_cancre_age.pdf") # #### Prevalence of 2+ ADL difficulties in Cancer Patients age 65+ #pl1 = plotlines(sname, sdesc, xvar="year", yvar="padl2p_cancre65p", "Year", "Prevalence (%)", ymult=100, 0, 25, "Prevalence of 2+ ADL Difficulties in Cancer Patients Age 65+") #append.ggplots.8x8pdf(pl1, pl.age_cancre65p + ylab("Mean Age"), pdfname="padl2p_cancre65p_age.pdf") # #### Prevalence of 2+ IADL difficulties in Cancer Patients #pl1 = plotlines(sname, sdesc, xvar="year", yvar="piadl2p_cancre", "Year", "Prevalence (%)", ymult=100, 0, 12, "Prevalence of 2+ IADL Difficulties in Cancer Patients") #append.ggplots.8x8pdf(pl1, pl.age_cancre + ylab("Mean Age"), pdfname="piadl2p_cancre_age.pdf") # #### Prevalence of 2+ IADL difficulties in Cancer Patients age 65+ #pl1 = plotlines(sname, sdesc, xvar="year", yvar="piadl2p_cancre65p", "Year", "Prevalence (%)", ymult=100, 0, 12, "Prevalence of 2+ IADL Difficulties in Cancer Patients Age 65+") #append.ggplots.8x8pdf(pl1, pl.age_cancre65p + ylab("Mean Age"), pdfname="piadl2p_cancre65p_age.pdf") # ######### create dummy file to tell make when script finished ######### cat(file="dummy_plots.txt","This is a dummy file for R plots in the make process") #######################################################################